Open Access Open Access  Restricted Access Subscription Access

A RESEARCH ON ARBUSCULAR MYCORRHIZAL FUNGI IN DEGRADED LAND

Dr. Gorgile V. T. Dr. Bharat Jinturkar

Abstract


Abstract:- foundation Furthermore Objectives: study zone from claiming Naldurg is spotted at 17. 82°N 76. 3°E done Osmanabad locale of Marathwada locale over Maharashtra state. This zone fails to offer characteristic assets and will be inclined will drought, rough dry with low Furthermore dubious rainfall, subsequently those targets from claiming this investigation might have been to discover that status about am growths on weeds developing around desolate also corrupted land their use over agribusiness throughout both rabikharif seasons. Methodology: corrupted land fields weedy plant species about establishes were gathered previously, rabi Also kharif season Throughout 2015-2016. Three every plant species were chose to appraisal from claiming AMF root colonization, spore thickness Furthermore spore differences might have been ascertained starting with each test gathered for weedy plants species.


Full Text:

PDF

References


Abbott L. K., Robson A. D. (1991). Factors influencing the occurrence of vesicular-carbuncular mycorrhizas. Agric. Ecosyst. Environ. 35 121–150. 10.1016/0167-8809(91)90048-3

Adholeya A., Tiwari P., Singh R. (2005). “Large scale inoculums production of carbuncular mycorrhizal fungi on root organs and inoculation strategies,” in Soil Biology in Vitro Culture of Mycorrhizae Vol. 4 eds Declerck S., Strullu D. G., Fortin A., editors. (Berlin: Springer-Verlag), 315–338.

Aerts R., Honnay O. (2011). Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11:29 10.1186/1472-6785-11-29

Alexander I., Ahmad N., See L. S. (1992). The role of mycorrhizas in the regeneration of some Malaysian forest trees. Philos. Trans. Biol. Sci. 335 379–388. 10.1098/rstb.1992.0029

Al-Karaki G. N. (2013). “The role of mycorrhiza in the reclamation of degraded lands in arid environments,” in Developments in Soil Classification, Land Use Planning and Policy Implications: Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources, eds Shahid S. A., Taha F. K., Abdelfattah M. A., editors. (Dordrecht: Springer Science Business Media), 823–836.

Allen E. B., Allen M. F., Egerton-Warburton L., Corkidi L., Gomez-Pompa A. (2003). Impacts of early and late-seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecol. Appl. 13 1701–1717. 10.1890/02-5309

Amir H., Lagrange A., Hassaïne N., Cavaloc Y. (2013). Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23 585–595. 10.1007/s00572-013-0499-6

Angelini C., Altieri A. H., Silliman B. R., Bertness M. D. (2011). Interactions among foundation species and their consequences for community organization, biodiversity, and conservation. Bio Science 61 782–789. 10.1525/bio.2011.61.10.8

Antunes P. M., Schneider K., Hillis D., Klironomos J. N. (2007). Can the carbuncular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia 51 281–286. 10.1016/j.pedobi.2007.04.007

Aradottir A. L., Hagen D. (2013). Ecological restoration: approaches and impacts on vegetation, soils and society. Advan. Agron. 120 173–222. 10.1016/b978-0-12-407686-0.00003-8

Aronson J., Fled C., Le Floc’h E., Ode C., Pontanier R. (1993). Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands: a view from the south. Restore. Ecol. 1 8–17. 10.1111/j.1526-100X.1993.tb00004.x

Augé R. M. (2004). Carbuncular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 84 373–381. 10.4141/S04-002

Azcón-Aguilar C., Bago B., Barea J. M. (1999). “Saprophytic growth of carbuncular mycorrhizal fungi,” in Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, eds Varma A., Hock B., editors. (New York, NY: Springer ;), 391–407.

Bago B., Cano C. (2005). “,” in Soil Biology in Vitro Culture of Mycorrhizae Vol. 4 eds Declerck S., Strullu D. G., Fortin A., editors. (Berlin: Springer-Verlag;), 111–138.

Bai Z. G., Dent D. L., Olsson L., Schaepman M. E. (2008). Soil Use Manag. 24 223–234. 10.1111/j.1475-2743.2008.00169.x

Banerjee K., Gadani M. H., Srivastava K. K., Verma N., Jasrai Y. T., Jain N. K. (2013). Screening of efficient arbuscular mycorrhizal fungi for Azadirachta indica under nursery condition: a step towards forestation of semi-arid region of Western India. Braz. J. Microbiol. 44 587–593. 10.1590/S1517-83822013005000046

Barea J. M., Azcon R., Azcón-Aguilar C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antoine Van Leeuwenhoek 81 343–351. 10.1023/A:1020588701325

Barea J. M., Palenzuela J., Cornejo P., Sánchez-Castro I., Navarro-Fernández C., Lopéz- García A., et al. (2011). Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J. Arid Environ. 75 1292–1301. 10.1016/j.jaridenv.2011.06.001

Bécard G., Fortin J. A. (1988). Early events of vesicular-carbuncular mycorrhiza formation in RiT-DNA transformed roots. New Phytol. 108 211–218. 10.1111/j.1469-8137.1988.tb03698.x

Bender S. F., Conen F., Van der Heijden M. G. A. (2015). Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol. Bio chem. 80 283–292. 10.1016/j.soilbio.2014.10.016


Refbacks

  • There are currently no refbacks.